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Abstract
Hardness results for maximum agreement problems have
close connections to hardness results for proper learning
in computational learning theory. In this paper we prove
two hardness results for the problem of finding a low
degree polynomial threshold function (PTF) which has
the maximum possible agreement with a given set of
labeled examples in Rn × {−1, 1}. We prove that for any
constants d > 1, ε > 0,

• Assuming the Unique Games Conjecture, no
polynomial-time algorithm can find a degree-d PTF
that is consistent with a ( 1

2
+ ε) fraction of a given

set of labeled examples in Rn×{−1, 1}, even if there
exists a degree-d PTF that is consistent with a 1 − ε
fraction of the examples.

• It is NP-hard to find a degree-2 PTF that is consis-
tent with a ( 1

2
+ ε) fraction of a given set of labeled

examples in Rn ×{−1, 1}, even if there exists a half-
space (degree-1 PTF) that is consistent with a 1 − ε
fraction of the examples.

These results immediately imply the following hard-

ness of learning results: (i) Assuming the Unique Games

Conjecture, there is no better-than-trivial proper learning

algorithm that agnostically learns degree-d PTFs under

arbitrary distributions; (ii) There is no better-than-trivial

learning algorithm that outputs degree-2 PTFs and ag-

nostically learns halfspaces (i.e. degree-1 PTFs) under

arbitrary distributions.
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1 Introduction

A polynomial threshold function (PTF) of degree
d is a function f : Rn → {−1, +1} of the form
f(x) = sign(p(x)), where

p(x) =
∑

multiset S⊆[n],|S|6d

cS

∏

i∈S

xi

is a degree-d multivariate polynomial with real coeffi-
cients. Degree-1 PTFs are commonly known as half-
spaces or linear threshold functions, and have been
intensively studied for decades in fields as diverse
as theoretical neuroscience, social choice theory and
Boolean circuit complexity.

The last few years have witnessed a surge of re-
search interest and results in theoretical computer
science on halfspaces and low-degree PTFs, see e.g.
[25, 23, 7, 8, 10, 6, 15]. One reason for this interest is
the central role played by low-degree PTFs (and half-
spaces in particular) in both practical and theoretical
aspects of machine learning, where many learning al-
gorithms either implicitly or explicitly use low-degree
PTFs as their hypotheses. More specifically, several
widely used linear separator learning algorithms such
as the Perceptron algorithm and the “maximum mar-
gin” algorithm at the heart of Support Vector Ma-
chines output halfspaces as their hypotheses. These
and other halfspace-based learning methods are com-
monly augmented in practice with the “kernel trick,”
which makes it possible to efficiently run these al-
gorithms over an expanded feature space and thus
potentially learn from labeled data that is not lin-
early separable in Rn. The “polynomial kernel” is a
popular kernel to use in this way; when, as is usu-
ally the case, the degree parameter in the polynomial
kernel is set to be a small constant, these algorithms
output hypotheses that are equivalent to low-degree
PTFs. Low-degree PTFs are also used as hypothe-
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ses in several important learning algorithms with a
more complexity-theoretic flavor, such as the low-
degree algorithm of Linial et al. [21] and its variants
[12, 22], including some algorithms for distribution-
specific agnostic learning [14, 20, 3, 6].

Given the importance of learning algorithms that
construct low-degree PTF hypotheses, it is a natural
goal to study the limitations of learning algorithms
that work in this way. On the positive side, it is well
known that if there is a PTF (of constant degree d)
that is consistent with all the examples in a data
set, then a consistent hypothesis can be found in
polynomial time simply by using linear programming
(with the Θ(nd) monomials of degree at most d as the
variables in the LP). However, the assumption that
some low-degree PTF correctly labels all examples
seems quite strong; in practice data is often noisy or
too complex to be consistent with a simple concept.
Thus we are led to ask: if no low-degree PTF classifies
an entire data set perfectly, to what extent can the
data be learned using low-degree PTF hypoptheses?

In this paper, we address this question under the
agnostic learning framework [11, 16]. Roughly speak-
ing, a function class C is agnostically learnable if we
can efficiently find a hypothesis that has accuracy ar-
bitrarily close to the accuracy of the best hypothesis
in C. Uniform convergence results [11] imply that
learnability in this model is essentially equivalent to
the ability to come up with a hypothesis that cor-
rectly classifies almost as many examples as the op-
timal hypothesis in the function class. This problem
is sometimes referred to as a “Maximum Agreement”
problem for C. As we now describe, this problem has
previously been well studied for the class C of halfs-
paces.

Related Work. The Maximum Agreement prob-
lem for halfspaces over Rn was shown to be NP-
hard to approximate within some constant factor in
[1, 2]. The inapproximability factor was improved
to 84/85 + ε in [4], which showed that this hardness
result applies even if the examples must lie on the n-
dimensional Boolean hypercube. Finally, a tight in-
approximability result was established independently
in [10] and [7]; these works showed that for any con-
stant ε > 0, it is NP-hard to find a halfspace consis-
tent with ( 1

2 + ε) of the examples even if there exists
a halfspace consistent with (1 − ε) of the examples.
(It is trivial to find a halfspace consistent with half of
the examples since either the constant-0 or constant-1
halfspace will suffice.) The reduction in [7] produced
examples with real-valued coordinates, whereas the
proof in [10] yielded examples that lie on the Boolean
hypercube.

Thanks to these results the Maximum Agreement

problem is well-understood for halfspaces, but the
situation is very different for low-degree PTFs. Even
for degree-2 PTFs no hardness results were previously
known, and recent work [6] has in fact given efficient
agnostic learning algorithms for low-degree PTFs
under specific distributions on examples such as
Gaussian distributions or the uniform distribution
over {−1, 1}n (though it should be noted that these
distribution-specific agnostic learning algorithms for
degree-d PTFs are not proper – they output PTF
hypotheses of degree � d). In this paper we make
the first progress on this problem, by establishing
strong hardness of approximation results for the
Maximum Agreement problem for low-degree PTFs.
Our results directly imply corresponding hardness
results for agnostically learning low degree PTFs
under arbitrary distributions; we present all these
results below.

Main Results. Our main results are the follow-
ing two theorems. The first result establishes UGC-
hardness of finding a nontrivial degree-d PTF hypoth-
esis even if some degree-d PTF has almost perfect
accuracy:

Theorem 1.1. Fix ε > 0, d > 1. Assuming the
Unique Games Conjecture, no polynomial-time algo-
rithm can find a degree-d PTF that is consistent with
( 1
2 + ε) fraction of a given set of labeled examples in
Rn×{−1, 1}, even if there exists a degree-d PTF that
is consistent with a 1 − ε fraction of the examples.

The second result shows that it is NP-hard to
find a degree-2 PTF hypothesis that has nontrivial
accuracy even if some halfspace has almost perfect
accuracy:

Theorem 1.2. Fix ε > 0. It is NP-hard to find a
degree-2 PTF that is consistent with ( 1

2 + ε) fraction
of a given set of labeled examples in Rn × {−1, 1},
even if there exists a halfspace (degree-1 PTF) that is
consistent with a 1 − ε fraction of the examples.

As noted above, both problems become easy
(using linear programming) if the best hypothesis is
assumed to have perfect agreement with the data set
rather than agreement 1 − ε, and it is trivial to find
a (constant-valued) hypothesis with agreement rate
1/2 for any data set. Thus the parameters in both
hardness results are essentially the best possible.

These results can be rephrased as hardness of
agnostic learning results in the following way: (i)
Assuming the Unique Games Conjecture, even if
there exists a degree-d PTF that is consistent with
1 − ε fraction of the examples, there is no efficient
proper agnostic learning algorithm that can output
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a degree-d PTF correctly labeling more than 1
2 + ε

fraction of the examples; (ii) Assuming P 6= NP,
even if there exists a halfspace that is consistent with
1 − ε fraction of the examples, there is no efficient
agnostic learning algorithm that can find a degree-2
PTF correctly labeling more than 1

2 + ε fraction of
the examples.

Organization. In Section 2 we present the
complexity-theoretic basis (the Unique Games con-
jecture and the NP-hardness of Label Cover) of our
hardness results. In Section 3 we sketch a new proof
of the hardness of the Maximum Agreement problem
for halfspaces, and give an overview of how the proofs
of Theorems 1.1 and 1.2 build on this basic argument.
In Sections 4 and 5 we prove Theorems 1.1 and 1.2.

Notational Preliminaries: For n ∈ Z+ we denote
by [n] the set {1, . . . , n}. For i, j ∈ Z+, i 6 j, we
denote by [i, j] the set {i, i + 1, . . . , j}. We write
{j : m} to denote the multi-set that contains m copies
of the element j. We write χS(x) to denote

∏
i∈S xi,

the monomial corresponding to the multiset S.

2 Complexity-theoretic preliminaries

We recall the Unique Games problem that was intro-
duced by Khot [17]:

Definition 2.1. A Unique Games instance L is
defined by a tuple (U, V,E, k, Π). Here U and V
are the two vertex sets of a regular bipartite graph
and E is the set of edges between U and V . Π is a
collection of bijections, one for each edge: Π = {πe :
[k] → [k]}e∈E where each πe is a bijection on [k].
A labeling ` is a function that maps U → [k] and
V → [k]. We say that an edge e = (u, v) is satisfied
by labeling ` if πe(`(v)) = `(u). We define the value
of the Unique Games instance L, denoted Opt(L), to
be the maximum fraction of edges that can be satisfied
by any labeling.

The Unique Games Conjecture (UGC) was pro-
posed by Khot in [17] and has led to many improved
hardness of approximation results over those which
can be achieved assuming only P 6= NP:

Conjecture 2.2 (Unique Games Conjecture).
1 Fix any constant η > 0. For sufficiently large
k = k(η), given a Unique Games instance L =
(U, V,E, k, Π) that is guaranteed to satisfy one of the
following two conditions, it is NP-hard to determine
which condition is satisfied: Opt(L) > 1 − η, or
Opt(L) 6 1

kη .

1We use the statement from [18] which is equivalent to the

original Unique Games Conjecture.

Our first hardness result, Theorem 1.1, is proved
under the the Unique Games Conjecture. Our second
hardness result, Theorem 1.2, uses only the assump-
tion that P 6= NP; the proof employs a reduction
from the Label Cover problem, defined below.

Definition 2.3. A Label Cover instance L is defined
by a tuple (U, V,E, k,m, Π). Here U and V are the
two vertex sets of a regular bipartite graph and E is
the set of edges between U and V . Π is a collection
of “projections”, one for each edge: Π = {πe : [m] →
[k]}e∈E and m, k are positive integers. A labeling `
is a function that maps U → [k] and V → [m]. We
say that an edge e = (u, v) is satisfied by labeling `
if πe(`(v)) = `(u). We define the value of the Label
Cover instance, denoted Opt(L), to be the maximum
fraction of edges that can be satisfied by any labeling.

We use the following theorem [24] which estab-
lishes NP-hardness of a “gap” version of Label Cover:

Theorem 2.4. Fix any constant η > 0. Given a La-
bel Cover instance L = (U, V,E, k,m, Π) that is guar-
anteed to satisfy one of the following two conditions,
it is NP-hard to determine which condition is satis-
fied: Opt(L) = 1, or Opt(L) 6 1/mη.

3 Overview of our arguments

To illustrate the structure of our arguments, let us
begin by sketching a proof of the following hardness
result for the Maximum Agreement problem for half-
spaces:

Proposition 3.1. Assuming the Unique Games
Conjecture, no polynomial-time algorithm can find
a halfspace (degree-1 PTF) that is consistent with
( 1
2 + ε) fraction of a given set of labeled examples in
Rn × {−1, 1}, even if there exists a halfspace that is
consistent with a 1 − ε fraction of the examples.

As mentioned above, the same hardness result
(based only on the assumption that P 6= NP) has
already been established in [7, 10]; indeed, we do not
claim Proposition 3.1 as a new result. However, the
argument sketched below is different from (and, we
believe, simpler than) the other proofs; it helps to
illustrate how we eventually achieve the more general
hardness results Theorems 1.1 and 1.2.

Proof Sketch for Proposition 3.1: We describe
a reduction that maps any instance L of Unique
Games to a set of labeled examples with the following
guarantee: if Opt(L) is very close to 1 then there
is a halfspace that agrees with 1 − ε fraction of the
examples, while if Opt(L) is very close to 0 then no
halfspace agrees with more than 1

2 + ε fraction of the
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examples. A reduction of this sort directly yields
Proposition 3.1.

Let L = (U, V,E, k, Π) be a Unique Games
instance. Each example generated by the reduction
has (|V | + |U |)k coordinates, i.e. the examples lie
in R(|U |+|V |)k. The coordinates should be viewed as
being grouped together in the following way: there
is a block of k coordinates for each vertex w in
U ∪ V . We index the coordinates of x ∈ R(|U |+|V |)k

as x = (x(i)
w ) where w ∈ U ∪ V and i ∈ [k].

Given any function f : R(|U |+|V |)k → {−1, 1}
and vertex w ∈ U ∪ V , we write fw to denote the
restriction of f to the k coordinates (x(i)

w )i∈[k] that is

obtained by setting all other coordinates (x(j)
w′ )w′ 6=w

to 0. Similarly, for e = {u, v} an edge in U × V , we
write fe for the restriction that fixes all coordinates
(x(i)

w′ )w′ /∈e to 0 and leaves the 2k coordinates x
(i)
u , x

(i)
v

unrestricted.
For every labeling ` : U ∪V → [k] of the instance,

there is a corresponding halfspace over R(|V |+|U |)k

sign(
∑

u∈U

x(`(u))
u −

∑

v∈V

x(`(v))
v ).

Given a Unique Games instance L, the reduction
constructs a distribution D over labeled examples
such that if Opt(L) is almost 1 then the above
halfspace has very high accuracy w.r.t. D, and any
halfspace that has accuracy at least 1

2 + ε yields a
labeling that satisfies a constant fraction of edges in
L. A draw from D is obtained by first selecting a
uniform random edge e = {u, v} from E, and then
making a draw from De, where De is a distribution
over labeled examples that we describe below.

Fix an edge e = (u, v). For the sake of exposition,
let us assume the mapping πe ∈ Π associated with e
is the identity permutation, i.e. πe(i) = i for every
i ∈ [k]. The distribution De will have the following
properties:

(i) For every (y, b) in the support of De, all coordi-
nates y

(i)
w for every vertex w /∈ e are zero.

(ii) For every label i ∈ [k], the halfspace sign(x(i)
u −

x
(i)
v ) has accuracy 1 − ε w.r.t.De.

(iii) If sign(fe) is a halfspace that has accuracy
at least 1

2 + ε w.r.t. De, then the functions
fu, fv can each be individually “decoded” to
a “small” (constant-sized) set Su, Sv ⊆ [k] of
labels such that Su ∩ Sv 6= ∅ (so a labeling
that satisfies a nonnegligible fraction of edges in
expectation can be obtained simply by choosing
a random label from Sw for each w – such a
random choice will satisfy each edge’s bijection

with constant probability, so in expectation will
satisfy a constant fraction of constraints).

Let us explain item (iii) in more detail. Since
the distribution De is supported on vectors y that
have the (y(i)

w )w/∈e coordinates all 0, the distribution
De only “looks at” the restriction fe of f , which
is a halfspace on R2k. Thus achieving (iii) can be
viewed as solving a kind of property testing problem
which may loosely be described as “Matching dictator
testing for halfspaces.” To be more precise, what
is required is a distribution De over 2k-dimensional
labeled examples and a “decoding” algorithm A
which takes as input a k-variable halfspace and
outputs a set of coordinates. Together these must
have the following properties:

• (Completeness) If fe(x) = x
(i)
u − x

(i)
v then

sign(fe(y)) = b with probability 1− ε for (y, b) ∼
De;

• (Soundness) If fe is such that sign(fe(y)) = b
with probability at least 1/2 + ε for (y, b) drawn
from De, then the output sets A(fu), A(fv) of
the decoding algorithm (when it is run on fu and
fv respectively) are two small sets that intersect
each other.

Testing problems of this general form are often re-
ferred to as Dictatorship Testing; the design and anal-
ysis of such tests is a recurring theme in hardness of
approximation.

We give a “matching dictator test for halfspaces”
below. More precisely, in the following figure we de-
scribe the distribution De over examples (the decod-
ing algorithm A is described later).
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T1: Matching Dictatorship Test for
Halfspaces

Input: A halfspace fe : R2k → R.

Set ε := 1
log k , δ := 1/2k.

1. Generate independent 0/1 bits a1, a2, . . . , ak

each with E[ai] = ε. Generate 2k inde-
pendent N(0, 1) Gaussian random variables:
h1, h2 . . . , hk, g1, g2 . . . , gk. Generate a ran-
dom bit b ∈ {−1, 1}.

2. Set r = (a1h1 + g1, . . . , akhk + gk, g1, . . . , gk)
and ω = (1, . . . , 1, 0, . . . , 0) ∈ R2k to be the
vector whose first k coordinates are 1 and last
k coordinates are 0.

3. Set y = r + bδω. The result of a draw from
De is the labeled example (y, b).

The test checks whether sign(fe(y)) equals b.

It is useful to view the test in the following light:
Let us write fe(x) as θ+

∑k
i=1 w

(i)
u x

(i)
u +

∑k
i=1 w

(i)
v x

(i)
v ,

and let us suppose that
∑k

i=1 |w
(i)
u | = 1 (as long

as some w
(i)
u is nonzero this is easily achieved by

rescaling; for this intuitive sketch we ignore the case
that all w

(i)
u are 0, which is not difficult to handle).

Then we have fe(y) = fe(r)+bδ, and we may view the
test as randomly choosing one of the two inequalities
fe(r) − δ < 0, fe(r) − δ > 0 and checking that it
holds. Since at least one of these inequalities must
hold for every fe, the probability that fe passes the
test is 1

2 + 1
2Prr[fe(r) ∈ [−δ, δ)]. This interpretation

will be useful both for analyzing completeness and
soundness of the test.

For completeness, it is easy to see that the
“matching dictator” function fe(x) = x

(i)
u − x

(i)
v has

fe(r) = aihi and thus Pr[fe(r) = 0] = 1 − ε, so this
function indeed passes the test with probability 1−ε.

The soundness analysis, which we now sketch,
is more involved. Let f be such that Prr[fe(r) ∈
[−δ, δ)] > 2ε. Since fe(r) =

∑
i(w

(i)
u + w

(i)
v )gi +

∑
w

(i)
u aihi and gi, hi are i.i.d. Gaussians, conditioned

on a given outcome of the ai-bits the value fe(r)
follows the Gaussian distribution with mean 0 and
variance

∑
(w(i)

u + w
(i)
v )2 +

∑
(aiw

(i)
u )2. Now recall

that an N(0, σ) Gaussian random variable lands in
the interval [−t, t] with probability at most O(t/σ).
So any a-vector for which the variance

∑
(w(i)

u +
w

(i)
v )2 +

∑
(aiw

(i)
u )2 is not “tiny” can contribute only

a negligible amount to the overall probability that
fe(r) lies in [−δ, δ) (recall that δ is extremely tiny).

Since by assumption Prr[fe(r) ∈ [−δ, δ)] is non-
negligible (at least 2ε), there must be a non-negligible
fraction of a-vector outcomes that make the variance∑

(w(i)
u +w

(i)
v )2 +

∑
(aiw

(i)
u )2 be “tiny.” This implies

that there must be only a “few” coordinates w
(j)
u

for which |w(j)
u | is not tiny (for if there were many

non-tiny w
(j)
u coordinates, then

∑
i(w

(i)
u ai)2 would be

non-tiny with probability nearly 1 over the choice of
the a-vector). Moreover, w

(i)
u + wv

(i) must be ≈ 0 for

each i, so for each i the magnitudes |w(i)
u | and |w(i)

v |
must be nearly equal; and in particular, each |w(i)

u |
is large if and only if |w(i)

v | is large. Finally, since
∑

i |w
(i)
u | equals 1 some w

(i)
u ’s must be large (at least

1/k).
With these facts in place, the appropriate de-

coding algorithm A is rather obvious: given fu =
θ +

∑k
i=1 w

(i)
u x

(i)
u as input, A outputs the set Su of

those coordinates i for which |w(i)
u | is large (and sim-

ilarly for fv). This set cannot be too large since
∑k

i=1 |w
(i)
u | equals 1. Now a labeling that satisfies

edge e with non-negligible probability can be ob-
tained by outputing a random element from Su and
a random element from Sv; since these sets are small
there is a non-negligible probability that the labels
will match as required. This concludes the proof
sketch of Proposition 3.1.

Overview of the proofs of Theorems 1.1
and 1.2. For Theorem 1.1 (hardness of properly
learning degree-d PTFs), we must deal with the
additional complication of handling the cross-terms
such as x

(i)
u x

(j)
v between u-variables and v-variables

that may be present in degree-d PTFs. As an ex-
ample of how such cross-terms can cause problems,
observe that the degree-3 polynomial fe = (x(i)

u −
x

(i)
v )
∑

(x(i)
u )2 would pass the test T1 with high prob-

ability, but this polynomial has fv = 0 so there is
no way to successfully “decode” a good label for v.
To get around this, we modify the test T1 to set
y = (a1h1 + gd

1 + bδ, a2h2 + gd
2 + bδ, . . . , akhk + gd

k +
bδ, g1, . . . , gk); intuitively this modified test checks
whether the polynomial fe is of the form x

(i)
u −(x(i)

v )d.
The bulk of our work is in analyzing the soundness of
this test; we show that any polynomial fe that passes
the modified test with probability significantly better
than 1/2 must have almost no coefficient weight on
cross-terms, and that in fact the restricted polynomi-
als fu, fv can each be decoded to a small set in such a
way that there is a matching pair as desired. We give
a complete description and analysis of our Dictator
Test and prove Theorem 1.1 in Section 4.

For Theorem 1.2, a first observation is that the
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test T1 in fact already has soundness 3/4 + ε for
degree-2 PTFs. To see this, we begin by writing
the degree-2 polynomial fe(x) as θ + f1(x) + f2(x)
where f1(x) is the linear (degree 1) part and f2(x)
is the quadratic (degree 2) part (note that f1 is
an odd function and f2 is an even function). We
next observe that since any vector r is generated
with the same probability as −r, the test may be
viewed as randomly selecting one of the following 4
inequalities to verify: fe(r + δω) > 0, fe(r− δω) < 0,
fe(−r + δω) > 0, fe(−r − δω) < 0. If all four
inequalities hold, then combining fe(r + δω) > 0
with fe(−r − δω) < 0 we get that f1(r + δω) > 0
and combining fe(r − δω) < 0 with fe(−r + δω) > 0
we get f1(r − δω) < 0. Consequently, if a degree-2
polynomial fe passes the test with probability 3/4+ε,
then by an averaging argument, for at least an ε
fraction of the r-outcomes all four of the inequalities
must hold. This implies that for an ε fraction of the
r’s we must have f1(r + δω) > 0 and f1(r − δω) < 0,
and so the degree-1 PFT f1 must pass the Dictator
Test T1 with probability at least 1/2 + ε. This
essentially reduces to the problem of testing degree-1
PTFs, whose analysis is sketched above.

To get the soundness down to 1/2 more work has
to be done. Roughly speaking, we modify the test
by checking that sign(f(k1r + k2δω)) = sign(k2) for
k1, k2 generated from a carefully constructed distri-
bution in which k1, k2 can assume many different pos-
sible orders of magnitude. Using these many different
possibilities for the magnitudes of k1, k2, a careful
analysis (based on carefully combining inequalities
in a way that is similar to the previous paragraph,
though significantly more complicated) shows that if
a polynomial passes the test with probability 1/2 + ε
fraction then it can be “decoded” to a small set of co-
ordinates. In addition to this modification, to avoid
using the Unique Games Conjecture we employ the
“folding trick” that is proposed in [9, 19] to ensure
consistency across different vertices. One benefit of
using this trick is that with it, we only need to de-
sign a test on one vertex instead of an edge.2 The
complete proof of Theorem 1.2 appears in Section 5.

4 Hardness of proper learning noisy degree-d
PTFs: Proof of Theorem 1.1

4.1 Dictator Test Let f : R2n → R be a 2n-
variable degree-d polynomial over the reals. The key
gadget in our UG–hardness reduction is a dictator

2The reason that we can not use “folding” for our first result

on low-degree PTFs, roughly speaking, is that such a folding

does not seem able to handle cross-terms of degree greater than

2.

test of whether f is of the form sign(xi − xd
n+i) for

some i ∈ [n]. More concretely, our dictator test
queries the value of f on a single point y ∈ R2n

and decides to accept or reject based on the value
sign(f(y)).

Td: Matching Dictator Test for degree-d
PTFs

Input: A degree-d real polynomial f : R2n → R.

Set β := 1/ log n and δ := 2−n2
.

1. Generate n i.i.d. bits ai ∈ {0, 1} with Pr[ai =
1] = β, i ∈ [n]. Generate 2n i.i.d. N(0, 1)
Gaussians {hi, gi}n

i=1. Generate a uniform
random bit b ∈ {−1, 1}.

2. Set y = (yi)2n
i=1 where yi = aihi + gd

i + bδ and
yn+i = gi, i ∈ [n].

3. Accept iff sign(f(y)) = b.

We can now state and prove the properties of our
test. The completeness is straightforward.

Lemma 4.1 (Completeness). The polynomial
f(x) = xi − xd

n+i passes the test with probability at
least 1 − β.

Proof. Note that f(y) = aihi + bδ. Hence if ai =
0 we have sign(f(y)) = b and this happens with
probability 1 − β.

To state the soundness lemma we need some
more notation. For a degree-d polynomial f(x) =∑

S⊆[n],|S|6dcS ∙χS(x) we denote wt(f) =
∑

S 6=∅|cS |.
For θ > 0, we define Iθ(f) := {i ∈ [n] | ∃S 3
i s.t. |cS | > θ ∙ wt(f)/

(
n+d

d

)
}. Note that for θ ∈

[0, 1] we have that Iθ(f) 6= ∅, since there are(
n+d

d

)
nonempty monomials of degree at most d over

x1, . . . , xn.
Let f : R2n → R be a 2n-variable polynomial

f(x) =
∑

S⊆[2n],|S|6dcS ∙ χS(x) fed as input to our
test. We will consider the restrictions obtained from
f by setting the first (resp. second) half of the
variables to 0. In particular, for x = (x1, . . . , x2n) we
shall denote f1(x1, . . . , xn) = f(x1, . . . , xn,0n) and
f2(xn+1, . . . , x2n) = f(0n, xn+1, . . . , x2n).

We are now ready to state our soundness lemma.
The proof of this lemma poses significant complica-
tions and constitutes the bulk of the analysis in this
section.

Lemma 4.2 (Soundness). Suppose that f(x) =∑
S⊆[2n],|S|6dcS ∙χS(x) passes the test with probability
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at least 1/2 + β. Then for f1, f2 as defined above, we
have |I0.5(f1)| 6 1/β2, |I1(f2)| 6 1/β2. In addition,
every i ∈ [n] such that n + i ∈ I1(f2) also satisfies
i ∈ I0.5(f1).

Proof. We can assume that wt(f) > 0, since other-
wise f is a constant function, hence passes the test
with probability exactly 1

2 . Since our test is invariant
under scaling, we can further assume that wt(f) = 1.

Let x ∈ R2n. By definition, f1(x) =
∑

S⊆[n]cS ∙
χS(x) and f2(x) =

∑
S⊆[n+1,2n]cS ∙ χS(x). We can

write

f(x) = f1(x) + f2(x) + f12(x)

where f12(x) =
∑

S⊆[2n],S∩[n] 6=∅,S∩[n+1,2n] 6=∅cS ∙
χS(x).

Let us start by giving a very brief overview
of the argument. The proof proceeds by carefully
analyzing the structure of the coefficients cS for the
subfunctions f1, f2, f12. In particular, we show that
the total weight of the cross terms (i.e. wt(f12)) is
negligible, and that the weight of f is roughly equally
spread among f1 and f2. Moreover, the coefficients of
f1, f2 are either themselves negligible or “matching”
(see inequalities (i)-(iv) below). Once these facts have
been established, it is not hard to complete the proof.

The main step towards achieving this goal is to
relate the coefficients cS with the coefficients of an
appropriately chosen restriction of f , obtained by
carefully choosing an appropriate value of a ∈ {0, 1}n.
We start with the following crucial claim:

Claim 4.3. Suppose f passes the test with probability
at least 1/2 + β. Then there exists α′ ∈ {0, 1}n such
that

‖fα′‖2 6 2−n ∙ logd2

n.

Proof of Claim 4.3. Let us start be giving an equiv-
alent description of the test. Denote ω = (1n,0n) ∈
R2n, r = (ri)2n

i=1 with ri = aihi + gd
i and rn+i = gi,

i ∈ [n]. Note that y = r + (bδ)ω. Then the Dictator
Test Td is as follows:

• Generate r, and with probability 1/2, test
whether f(r+δω) > 0; otherwise test f(r−δω) <
0.

Hence, since f passes with probability 1/2 + β, with
probability at least 2β over the choice of r, the
following inequalities are simultaneously satisfied:

f(r + δω) > 0; f(r − δω) < 0.

We now upper bound |f(r + δω) − f(r)|:

∣
∣f(r + δω) − f(r)

∣
∣

= |
∑

|S|6dcS ∙
(∏

i∈S∩[n](ri + δ)

∙
∏

j∈S∩[n+1,2n]rj −
∏

i∈Sri

)
|

6
∑

16|S|6d|cS | ∙
(∑

∅6=T⊆S∩[n]δ
|T | ∙

∏
i∈S\T |ri|

)

6
∑

16|S|6d|cS | ∙ 2
|S| ∙

(
δ ∙
∏

i∈S:ri>1|ri|
)

The last inequality follows from the fact that
there are at most 2|S| terms in the second summation
each bounded from above by δ ∙

∏
i∈S:ri>1|ri|.

We now claim that with probability at least 1 −
n−1 over the choice of r it holds M := maxi∈[2n] |ri| 6
logd n. To see this note that if maxi∈[n]{|gi|, |hi|} 6 c

then M 6 2cd. Now recall that for g ∼ N(0, 1) and
c > 2 we have Pr[|g| > c] 6 e−c2/2. The claim follows
by fixing c = Θ(log1/2 n) and taking a union bound
over the corresponding 2n events.

Therefore, with probability 1 − n−1 over the
choice of r, we have
∣
∣f(r + δω) − f(r)

∣
∣ 6 δ ∙ 2d ∙ (log n)d2

∙ wt(f) 6 2−n.

Analogously we obtain that |f(r)−f(r−δω)| 6 2−n.
We conclude that with probability 2β−n−1 > β over
r

(4.1)
∣
∣f(r)

∣
∣ 6 2−n.

Recall that r is a random vector that depends on
a, g, h. For every realization of a ∈ {0, 1}n, we
denote the corresponding restriction of f as fa(g, h);
note that fa(g, h) is a degree d2 real polynomial over
Gaussian random variables. Let us denote ‖fa‖2 :=
Eg,h[fa(g, h)2]1/2.

At this point we appeal to an analytic fact
from [5]: low degree polynomials over independent
Gaussian inputs have good anti-concentration. In
particular, an application of Theorem A.2 for fa(g, h)
yields that for all a ∈ {0, 1}n it holds

Prg,h[|fa(g, h)| 6 2−n] 6 d2 ∙ (2−n/‖fa‖2)
1/d2

.

Combined with (4.1) this gives
β 6 Pra,g,h [|fa(g, h)| 6 1/2n]

6 E
a

[
d2 ∙ (2−n/‖fa‖2)

1/d2
]
.

Now let us fix a′ := arg mina∈{0,1}n ‖fa‖2; the above

relation implies
(
2−n/‖fa′‖2

)1/d2

> β or ‖fa′‖2 6

2−n(1/β)d2
as desired. This completes the proof of

Claim 4.3.

Since a′ is fixed, we can express fa′ as a degree-d2

polynomial over the gi’s and hi’s. Let us write

fa′ =
∑

T,T ′wT,T ′ ∙
∏

i∈T gi ∙
∏

i∈T ′hi
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where T, T ′ ⊆ [n] are multi-sets satisfying |T |+|T ′| 6
d2 and wT,T ′ = wT,T ′(a′). Since fa′ has small
variance, intuitively each of its coefficients should also
be small. The following simple fact establishes such
a relationship:

Fact 4.4. Let f : Rl → R be a degree-d polynomial
f(x) =

∑
|S|6d cS ∙ χS(x) and G ∼ N(0, 1)l. For all

T ⊆ [l] we have ‖f(G)‖2 > d−d ∙ |cT |/
(
l+d
d

)
.

Proof of Fact 4.4. The fact follows by expressing
f in an appropriate orthonormal basis. Let
{HS}S⊆[l],|S|6d be the set of Hermite polynomials of
degree at most d over l variables, let and f(x) =∑

|S|6d f̂(S)HS(x) be the Hermite expansion of f .

Then, ‖f(G)‖2
2 =

∑
f̂(S)2 which clearly implies that

‖f(G)‖2 > maxS |f̂(S)|.
Fix an S ⊆ [l] with |S| 6 d. By basic properties

of the Hermite polynomials (see e.g. [13]) we have
that HS(x) =

∑
U⊆S hU

S ∙ χU (x) with |hU
S | 6 dd.

Hence, for a fixed T ⊆ [l], cT can be written as∑
S⊇T hT

S f̂(S). Since S ⊆ [l] and |S| 6 d, there are

at most
(
l+d
d

)
terms in the summation. Therefore,

it must be the case that there exists some S such
that |f̂(S)| > d−d ∙ |cT |/

(
l+d
d

)
. This completes the

proof.

Notation: For the remaining of this proof we will be
interested in the coefficients wT,T ′ for T ′ = ∅. For
notational convenience we shall denote wT := wT,∅.

We now claim that for all T we have

(4.2) |wT | 6 n−10d.

Using Fact 4.4, if this were not the case we would get
a contradiction with Claim 4.3.

At this point we establish the relationship be-
tween the wT ’s and the coefficients cS of f in our
original basis {χS}.

By definition, the restriction obtained from
fa′(g, h) by setting the hi variables to 0 is identical
to the function f(gd

1 , . . . , gd
n, g1, . . . , gn). Therefore

we have

∑
T⊆[n]wT ∙

∏
i∈T gi =(4.3)

∑
S⊆[2n]cS ∙

∏
i∈S∩[n]g

d
i ∙
∏

(n+i)∈Sgi

For any fixed T in the LHS of (4.3) there is an
equivalence class of sets S in the RHS such that the
monomial

∏
i∈S∩[n]g

d
i ∙
∏

(n+i)∈Sgi equals
∏

i∈T gi. It
is clear that wT equals

∑
ScS , where the sum is over

all S in the equivalence class. In fact, the structure of
the equivalence classes is quite simple, as established
by the following claim:

Claim 4.5. For any S0 6= S1 ⊆ [2n] of size at most
d, if

(4.4)
∏

i∈S0∩[n]g
d
i ∙
∏

n+j∈S0,j∈[n]gj

=
∏

i∈S1∩[n]g
d
i ∙
∏

n+j∈S1,j∈[n]gj ,

then there exists some ` ∈ [n] such that S0 = {`} and
S1 = {n + ` : d} or vice versa.

Proof of Claim 4.5. Consider the following two
complementary cases.

• S0 ∩ [n] 6= S1 ∩ [n]. Without loss of generality,
we can assume that there is some ` ∈ S0 ∩ [n]
with ` /∈ S1. (Otherwise the role of S0, S1 can
be reversed.) Then to make (4.4) hold, it must
be the case that S1 contains d copies of n + `.
Now, since |S1| 6 d, it can only be the case that
S1 = {n + ` : d}, which implies that S0 = {`}.

• S0 ∩ [n + 1, 2n] 6= S1 ∩ [n + 1, 2n]. We may
assume that there is some ` ∈ [n] such that
(n + `) ∈ S0. Then, for (4.4) to hold, it must
be the case that ` ∈ S1. Hence, it must be the
case that S1 = {n + ` : d} (since g` is raised to
the dth power in the RHS of (4.4)); this in turns
enforces S0 = {`}.

Claim 4.5 implies the following relation between
the coefficients cS and wT :

(A) If T = {i : d}, for some i ∈ [n], then we have
wT = cS1 + cS2 with S1 = {i} and S2 = {n + i :
d}.

(B) If T is not of the above form, then there exists a
multi-set S ⊆ [2n], |S| 6 d, where S 6= {i} and
S 6= {n+i : d} for any i ∈ [n], such that T equals
{i : d | i ∈ S} ∪ {i | n + i ∈ S}. In this case, we
have wT = cS .

We are now ready to establish the desired bounds
on the coefficients of the subfunctions f1, f2, f12.

(i) For all S ⊆ [n] with |S| > 2, (4.2) and (B) yield
|cS | 6 n−10d.

(ii) For all S ⊆ [n + 1, 2n] with S 6= {n + i : d} for
some i ∈ [n], (4.2) and (B) yield |cS | 6 n−10d.

(iii) For all i ∈ [n], by (4.2) and (A) we obtain∣
∣|c{i}| − |c{n+i:d}|

∣
∣ 6 |c{i} + c{n+i:d}| 6 n−10d.

(iv) For all S such that S∩[n] 6= ∅ and S∩[n+1, 2n] 6=
∅, (4.2) and (B) yield |cS | 6 n−10d.

Since the coefficients of f1, f2 are either very small
(cases (i), (ii) above) or matching (case (iii)), we get
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∣
∣wt(f1) − wt(f2)

∣
∣ 6 n−10d ∙

(
n+d

d

)
6 n−1. Moreover,

since every coefficient of f12 is small (case (iv)), we
deduce that wt(f12) 6 n−10d∙

(
2n+d

d

)
6 n−1. Recalling

that wt(f1) + wt(f2) + wt(f12) = wt(f) = 1, we get
wt(f1) + wt(f2) > 1 − 1

n . Combining these bounds,
we get that

(4.5) 0.51 > wt(f1), wt(f2) > 0.49.

Now fix an i ∈ [n] with (n + i) ∈ I1(f2). The
above inequality implies that there must exist some
S 3 (n + i) such that |cS | > 0.49/

(
n+d

d

)
. By (ii), we

deduce that it can only be the case that S equals {n+
i : d} (as all other coefficients in f2 are very small).

Moreover, (iii) implies that |ci| > 0.48
(
n+d

d

)−1
, hence

i ∈ I0.5(f1) (recalling that wt(f1) 6 0.51). So we
have |I1(f2)| 6 |I0.5(f1)| and it remains to bound
from above the size of I0.5(f1) by β−2.

Suppose (for the sake of contradiction) that
|I0.5(f1)| > β−2. Since wt(f1) > 0.49, every j ∈
I0.5(f1) comes from the set S = {j} (as all the other
coefficients of f1 are too small). Consider all pos-
sible realizations of a ∈ {0, 1}n. With probability
1 − (1 − β)|I0.5(f1)| > 1 − n−1 over the choice of
a, there exists i ∈ I0.5(f1) with ai = 1. Fix such
an i. By the definition of I0.5(f1), we must have

|c{i}| > 0.5∙0.49
(
n+d

d

)−1
> 0.2∙

(
n+d

d

)−1
. Hence, there

will be a degree-1 monomial in the expansion of fa

as a polynomial over g and h whose coefficient has

absolute value at least 0.2 ∙
(
n+d

d

)−1
.

The aforementioned and Fact 4.4 imply that with
probability 1 − n−1 over a it holds

‖fa‖2 >
0.2
(
n+d

d

) ∙
1

(
2n+d2

d2

)
(d2)d2

> Ω(
1

n2d2 ).

By Theorem A.2 and the fact that wt(f) =
1 we get that Pra,g,h [|fa(g, h)| 6 2−n] is at most
n−1 + O(d2 ∙ n2 ∙ 2−n/d2

) = o(β), which contradicts
(4.1). This completes the proof of Lemma 4.2.

4.2 Hardness reduction from Unique Games
With the completeness and soundness lemmas in
place, we are ready to prove Theorem 1.1. The
hardness reduction is from a Unique Games Instance
L(U, V,E, Π, k) to a distribution of positive and neg-
ative examples. The examples lie in R(|U |+|V |)k and
are labeled with either (+1) or (−1). Denote dim =
(|U | + |V |)k.

For w ∈ U ∪ V and x ∈ Rdim, we use x
(i)
w to

denote the coordinate corresponding to the vertex
w’s i-th label. We use xw to indicate the collec-
tion of coordinates corresponding to vertex w; i.e.,
(x(1)

w , x
(2)
w , . . . , x

(k)
w ). For a function f(x) : Rdim → R,

we use fu to denote the restriction of f obtained by
setting all the coordinates except xu to 0. Similarly,
fu,v denotes the restriction of f obtained by setting
all the coordinates except xu, xv to 0.

In the reduction that follows, starting from an
instance L of Unique Games, we construct a dis-
tribution D over labeled examples. Let us denote
by Opt(D) the agreement of the best degree-d PTF
on D; our constructed distribution has the following
properties:

• If Opt(L) = 1 − η, then Opt(D) = 1 − η − 1
log k ;

and

• If Opt(L) 6 1/kθ(η), then Opt(D) 6 1
2 + 2

log k .

This immediately yields the desired hardness
result. We now describe and analyze our reduction.

Reduction from Unique Games

Input: Unique Games Instance L(U, V,E, Π, k).
Set β = 1

log k and δ = 2−k2
.

1. Randomly choose an edge (u, v) ∈ E.

2. Set yw = 0 for any w ∈ U ∪ V such that
w 6= u,w 6= v.

3. Generate k i.i.d. bits ai ∈ {0, 1} with Pr[ai =
1] = β, 2k independent standard Gaussians
{hi, gi}k

i=1 and a uniform random sign b ∈
{−1, 1}.

4. For all i ∈ [k], set y
(i)
v := gi and y

(i)
u :=

aihi + (gπe(i))d + δb.

5. Output the labeled example (y, b).

Lemma 4.6 (Completeness). If Opt(L) = 1 − η,
then there is a degree-d PTF that is consistent with
1 − η − β fraction of the examples.

Proof. Suppose that there is a labeling L that satis-
fies 1 − η fraction of the edges. Then it is easy to
verify that the degree-d PTF

sign(
∑

u∈Ux(L(u))
u −

∑
v∈V (x(L(v))

v )d)

agrees with 1 − η − β fraction of the examples.

Lemma 4.7 (Soundness). If Opt(L) 6 1/kΘ(η), then
no degree-d PTF agrees with more than 1/2 + 2β
fraction of the examples.
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Proof. Suppose (for the sake of contradiction) that
some degree-d polynomial f satisfies 1/2+2β fraction
of examples. Then by an averaging argument, for β
fraction of the edges (u, v) picked in the first step,
we have that f(x) agrees with the labeled example
(y, b) with probability 1/2 + β. Let us call these
edges“good”.

Fix a “good” edge e = (u, v) and let us assume for
notational convenience that πe is the identity map-
ping. Essentially, we are conducting the test Td for
the restriction fu,v with parameter n := k. Since fu,v

passes the test with probability 1/2 + β, Lemma 4.2
implies that we must have that I0.5(fu), I1(fv) 6= ∅
and |I1(fv)|, |I0.5(fu)| 6 1/β2.

We are now ready to give our randomized label-
ing strategy (based on f). For every u ∈ U , randomly
pick its label from I0.5(fu) and for every v ∈ V ran-
domly pick its label from I1(fv). It is clear that each
good edge is satisfied with probability β2. Since at
least β fraction of the edges is good, such a label-
ing satisfies at least β3 = 1/(log k)3 fraction of the
edges in expectation. Hence, there exists a labeling
that satisfies such a fraction of the edges, which con-
tradicts the assumption that Opt(L) 6 1/kη, for k
sufficiently large.

4.3 A technical point: Discretizing the Gaus-
sian Distribution Lemmas 4.6 and 4.7 do not quite
suffice to prove Theorem 1.1, because the reduc-
tion described above is not computable in polyno-
mial time. This is because the distribution D has
infinite support; recall that for each edge e, sampling
from the corresponding distribution De requires gen-
erating 2k independent Gaussian random variables
h = (h1, . . . , hk), g = (g1, . . . gk).

To discretize the reduction we replace h by h′ and
g by g′, where each of the 2k random variables h′

i, g
′
i

is independently generated as a sum of N uniform
{−1, 1} bits divided by

√
N . In Theorem 4.9 of

Section 4.3.1, we argue that for sufficiently large N
(in particular any N > (2k)24(d

2)2 suffices), there
is a way to couple the distribution of (g, h) with
that of (g′, h′) such that every degree-d2 polynomial
takes the same sign on (g, h) as on (g′, h′) except
with probability at most 1/k. Since every outcome
of a ∈ {0, 1}k results in the polynomial fa(g, h)
being a degree-d2 polynomial, if we replace (g, h) with
(g′, h′) in the reduction then the discretized reduction
will almost preserve the soundness and completeness
guarantees of Section 4.2, with only a loss of 1

k :
writing D′ for the discretized distribution, we have

• If Opt(L) > 1−η, then Opt(D′) > 1−η− 1
log k −

1/k; and

• If Opt(L) 6 1/kη, then Opt(D′) 6 1
2+ 2

log k +1/k.

Finally, we observe that the distribution of
(g′, h′) has support of size (N + 1)2k 6 (2N)2k 6
(4k)48d4k; since the label size k is regarded as con-
stant in a Unique Games instance, this is a (large)
constant for constant d. Thus it is possible to simply
enumerate the entire support of D in polynomial time
(since there are |E| distributions De, the overall size
of the support of D is polynomial in the size of the
Unique Games instance) and consequently there is no
need for randomness – the entire overall reduction is
deterministic. Theorem 1.1 now follows by choosing
appropriate settings of η and k (e.g., η = ε/2 and
k = e1/ε2 suffices).

Finally, we note that the above remarks imply
that Theorem 1.1 holds not only for constant d, but
for d as large as O((log n)1/4) – since k is constant, for
such d the support size (4k)48d4k is still polynomial
in n.

4.3.1 Discretizing the Gaussian distribution
The following theorem shows that there exists a
distribution HN/

√
N that is point-wise close to a

Gaussian distribution G with high probability:

Theorem 4.8. There is a probability distribution
(G,HN ) on R2 such that the marginal distribution
G of the first coordinate follows the standard N(0, 1)
Gaussian distribution, and the marginal distribution
HN of the second coordinate is distributed as a sum of
N random bits, i.e., HN =

∑N
i=1 bi where each bi is

an independent random bit from {−1, 1}. In addition,
HN and G are pointwise close in the following sense:
Pr[|G − HN√

N
| 6 O(N−1/4)] > 1 − O(N−1/4).

Proof. Let Φ be the CDF (cumulative distribution
function) of HN , and let Ψ be the CDF of G (the
standard Gaussian Distribution).

We couple the random variables G,HN in the
following way: to obtain a draw (g0, h0) from the joint
distribution, first we sample h0 from the marginal
distribution on HN . We know that

Pr[HN = h0] = Φ(h0) − Φ(h0 − 2),

since if h0 is a feasible outcome of summing N bits
then h0 − 2 is the largest feasible outcome that is
less than h0 (if any feasible outcome less than h0

exists). Then we generate g0 by drawing random
samples from the standard Gaussian distribution
until we obtain a sample that lies in the interval
(Ψ−1(Φ(h0 − 2)), Ψ−1(Φ(h0)]; when we obtain such
a sample, we set g0 to this value.

It is not difficult to see that the random variable
G defined in this way follows the standard Gaussian
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distribution; essentially we are using the value of
h0 as a indicator of whether G is in the interval
(Ψ−1(Φ(h0 − 2)), Ψ−1(Φ(h0)]. We also need to check
that Pr[H = h0] is equal to Pr[G ∈ (Ψ−1(Φ(h0 −
2)), Ψ−1(Φ(h0))]. This is true because

Pr[H = h0]

= Pr[h ∈ (h0 − 2, h0]]

= Φ(h0) − Φ(h0 − 2)

= Pr[G ∈ (Ψ−1(Φ(h0 − 2)), Ψ−1(Φ(h0))]].

With the above coupling of G and H, it remains
to prove that every value in the interval (Ψ−1(Φ(h0−
2)), Ψ−1(Φ(h0))] is close to h0/

√
N , with high proba-

bility over a random choice of h0 as described above.
It suffices to verify that the following two inequalities
each hold with probability at least 1 − O(N−1/4):

∣
∣
∣
∣Ψ

−1(Φ(h0)) −
h0√
N

∣
∣
∣
∣ 6 O(N−1/4); and,

∣
∣
∣
∣Ψ

−1(Φ(h0 − 2)) −
h0√
N

∣
∣
∣
∣ 6 O(N−1/4).

We consider the first inequality; the first one is
entirely similar. We show that Ψ−1(Φ(h0)) − h0√

N
6

O(N−1/4); the other direction Ψ−1(Φ(h0)) − h0√
N
>

−O(N−1/4) is similar.
By the Berry-Esséen Theorem (Theorem A.1 in

Section A), we have that |Φ(h0) − Ψ( h0√
N

)| 6 1√
N

.

Therefore, we have that

(4.6)

Ψ−1(Φ(h0)) 6 Ψ−1(Ψ(
h0√
N

) +
1

√
N

) 6
h0√
N

+ Eh0 ,

where the “error term” Eh0 is the value for which
Ψ(h0/

√
N + Eh0) − Ψ(h0/

√
N) = 1/

√
N.

If |h0| 6
√

N ln N
2 , then in an interval of width

N1/4 around h0 the PDF of the standard Gaussian
is everywhere at least Ω(N−1/4); consequently, if

|h0| 6
√

N ln N
2 then the error term Eh0 is at most

O(N−1/4) as required. A standard Chernoff Bound

implies that Pr[|h0| <
√

N ln N
2 ] is at most O(N−1/4),

and the argument is complete.

Now we use the joint distribution constructed in
Theorem 4.8 to discretize the standard n-dimensional
Gaussian space for low-degree PTFs.

Theorem 4.9. Fix any constant D > 1, and let
f(x1, . . . , xn) =

∑
|S|6D f̂(S)

∏
i∈S xi be a degree-D

polynomial over Rn. Let (y, z) ∈ Rn×Rn be generated

by taking each pair (yi, zi) to be an i.i.d. draw from
the distribution (G,HN ) of Theorem 4.8, where we
take N = n24D2

. Then we have

Pr[sign(f(y)) 6= sign(f(z))] 6 O(1/n).

Proof. First, we may assume without loss of gener-
ality that the polynomial f is normalized so that∑

S 6=∅ |f̂(S)| equals 1. Since there are at most
(
n+D

D

)

coefficients in f , one of these coefficients f̂(S) must
satisfy |f̂(S)| > 1

(n+D
D ) ; now Lemma 4.4 implies that

‖f‖2 > 1

(n+D
D )2

DD
.

We have

Pr[sign(f(y)) 6= sign(f(z)] 6 Pr[|f(y)|

6 |f(z) − f(y)|].

To bound the latter probability by O(1/n), we show
that |f(y)| > n−3D2

with probability 1 − O(1/n),
and that |f(z) − f(y)| < n−3D2

with probability
1 − O(1/n).

The first desired bound, Pr[|f(y)| 6 n−3D2
] 6

O(1/n), is an immediate consequence of Theo-
rem A.2.

For the second, we note that by a union bound
and Theorem 4.8, with probability at least 1 −
O(n/N1/4) > 1 − O( 1

n ) every i ∈ [n] satisfies
|yi − zi| 6 O(N−1/4). Standard Chernoff bounds
and Gaussian tail bounds give that the probability
any |yi| or |zi| exceeds n1/d is much less than 1/n.
Now similar to the calculation used to bound f(r +
δω) − f(r)| in the proof of Claim 4.3, when y and
z are O(N−1/4)-close in each coordinate and each
coordinate is at most n1/d, we have that

|f(y) − f(z)| 6 O(N−1/4) ∙ O(n) < n−3D2

.

This concludes the proof.

5 Hardness of learning noisy halfspaces with
degree 2 PTF hypotheses: Proof of
Theorem 1.2

Similar to Section 4, the proof has two parts; first
(Section 5.1) we construct a dictator test for degree 2
PTFs, and then (Section 5.2) we compose the dictator
test with the Label Cover instance to prove NP-
hardness.

5.1 The Dictator Test The key gadget in the
hardness reduction is a Dictator Test that is designed
to check whether a degree-2 PTF is of the form
sign(xi) for some i ∈ [n]. Suppose f is a degree 2
polynomial

f(x) = θ + f1(x) + f2(x), where

1600 Copyright © by SIAM. 
Unauthorized reproduction of this article is prohibited.



f1(x) =
∑

i∈[n]

cixi and f2(x) =
∑

i,j∈[n],i6j

cijxixj .

Below we give a one-query Dictator Test T2 for
sign(f(x)).

T2: Dictator Test for Degree-2
Polynomials

Input: A degree-2 real polynomial f : Rn → R
Fix β := 1

log n and δ := 2−n.

1. Generate independent bits a1, a2, . . . , an ∈
{0, 1} each with expected value β.
Generate n independent N(0, 1) Gaus-
sian variables g1, . . . , gn. Set r =
(a1g1, a2g2, . . . , angn).

2. Generate t by randomly picking a number
i ∈ {1, 2, . . . , (log n)2} and set t = ni.
Generate a random bit b ∈ {−1, 1}.

3. Set ω ∈ Rn to be the all-1s vector
(1, . . . , 1) and set y = t3r + bt2δω.

4. Accept iff sign(f(y)) = b.

We show that T2 has the following completeness
and soundness properties.

Lemma 5.1. (Completeness) For i ∈ [n], the poly-
nomial f(x) = xi passes T2 with probability at least
1 − β.

Proof. If f(x) = xi for some i ∈ [n], then as long as
ai is set to zero in step 1 we have that f(x) = bδt2

and f passes the test. By definition of the test ai is
0 with probability 1 − β.

Lemma 5.2. (Soundness) Let A denote
∑n

i=1ci and
let I(f) be the set {i | ci > A/n2}. If a degree-2
polynomial f passes the test with probability at least
1/2 + β, then |I(f)| 6 1/β2 and A > 0.

Proof. The proof is by contradiction. Let f be a
degree-2 polynomial with |I(f)| > 1/β2 or A 6 0,
and suppose that f passes the test with probability
at least 1

2 + β.
First we show the following lemma.

Lemma 5.3. Prr[f1(r) ∈ (−δA, δA)] 6 2
n .

Proof. The inequality obviously holds for A 6 0 since
the interval has measure 0. Thus we may assume that
A > 0 and |I(f)| > 1/β2. We know that in step 1
when generating the bit-vector a, with probability at

least 1 − (1 − β)|I(f)| > 1 − 1
n at least one of the

coordinates in I(f) has its bit ai nonzero. Fix any
such outcome for the bit-vector a; now considering
the random choice of the Gaussians g1, . . . , gn, we
have that the resulting f1(r) is a Gaussian variable
with variance at least A2/n4 (as one of the weights
is at least A/n2). Using the standard fact that an
N(σ, μ) Gaussian random variable puts probability
mass at most t/σ on any interval of length t, we have
that for such an outcome of the a-vector,

Prg[f1(r) ∈ (−δA, δA)] 6
2δA

A/n2
6

n3

2n
6

1
n

.

Now a union bound gives that for at most 2
n of the

r generated, f(r) is inside the interval (−δA, δA).

Now we observe that for any outcome r, the
vectors r and −r are generated with equal probability.
Thus an equivalent test to T2 would be to generate r, t
as described by the test and then check a randomly
selected one of the following four inequalities:

f(t3r + t2δω) > 0(5.7)

f(t3r − t2δω) < 0(5.8)

f(−t3r + t2δω) > 0(5.9)

f(−t3r − t2δω) < 0.(5.10)

Since f is assumed to pass the test with proba-
bility 1

2 + β an averaging argument gives that for a
β/2 fraction of the possible outcomes of r, at least a
( 1
2 +β/2) fraction of all the constraints involving that

r outcome are satisfied. (Note that for any fixed out-
come of r there are 4(log n)2 constraints, correspond-
ing to inequalities (5.7)–(5.10) for each of the (log n)2

possible values of t.) For this β/2 fraction of r, let us
remove those outcomes r such that p1(r) ∈ (−δA, δA)
(recall that this is at most a 2/n fraction of all r-
outcomes). Recalling that β = 1

log n , we know there
are at least β/4 fraction of r-outcomes remaining; we
call these “good” r’s.

Let us fix a good r. By an averaging argument
again, for any “good” r, for at least a β/4 fraction
of the possible outcomes of t, at least 3 out of the 4
of the inequalities that contain t and r are satisfied.
There are 4 different ways of choosing 3 out of the 4
constraints. Without loss of generality, let us assume
that for a β/16 fraction of the t-outcomes, the first,
second, and fourth constraints (5.7), (5.8) and (5.10)
are satisfied. That is:

f(t3r + t2δω) > 0(5.11)

f(t3r − t2δω) < 0(5.12)

f(−t3r − t2δω) < 0.(5.13)
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Let us call these t “good” for the corresponding r, and
let us denote the set that contains all the “good” t for
a given “good” r by Tr. Since the possible choice of
t = ni ranges over all i ∈ [log2 n], we therefore obtain
|Tr| > (log n)2 ∙ β/16 = Θ(log n).

Since f(x) is a degree 2 polynomial, we can
express f(r + δω) as:

f(r + δω) = θ + f1(r) + f2(r)

+ δ
n∑

i=1

ci + δ2
∑

16i6j6n

cij + δ
∑

16i6j6n

cij(ri + rj).

Let us denote B =
∑

16i6j6n cij and f ′
2(r) =∑

16i6j6n cij(ri + rj). We can rewrite (5.11), (5.12),
(5.13) as:

t3f1(r) + t2δA + t6f2(r) + t5δf ′
2(r) + t4δ2B + θ > 0

(5.14)

t3f1(r) − t2δA + t6f2(r) − t5δf ′
2(r) + t4δ2B + θ < 0

(5.15)

t3f1(r) + t2δA − t6f2(r) − t5δf ′
2(r) − t4δ2B − θ > 0

(5.16)

Notice that (5.14) and (5.16) yield

f1(r) > −δA/t +
∣
∣t3f2(r) + δt2f ′

2(r) + δ2tB + θ/t3
∣
∣.

Since we already know that f1(r) /∈ (−δA, δA)
and t is at least 1, we get that

f1(r) > δA.

Also for (5.15), we can rewrite it as

f1(r) 6 δA/t − (t3f2(r) − δt2f ′
2(r) + δ2tB + θ/t3).

Let us further simplify the notation by writing C
for f2(r), D for δf ′

2(r) and E for δ2B. Then we may
rewrite the above constraints as follows:

f1(r) > −δA/t +
∣
∣t3C + t2D + tE + θ/t3

∣
∣

and

(5.17) δA 6 f1(r) 6 δA/t−(t3C−t2D+tE +θ/t3).

Notice that above (upper and lower) bound hold
for any t in Tr. Therefore, we know that for any
t1, t2 ∈ Tr,

δA/t1 − (t31C − t21D + t1E + θ/t31)

> −δA/t2 +
∣
∣t32C + t22D + t2E + θ/t32

∣
∣

which is equivalent to

(5.18) − (t31C − t21D + t1E + θ/t31) + δA(
1
t1

+
1
t2

)

>
∣
∣t32C + t22D + t2E + θ/t32

∣
∣.

Using the fact that f1(r) > δA, the inequal-
ity (5.17) gives −(t31C − t21D + t1E + θ/t31) >
(1 − 1

t1
)δA, which may be rewritten as δA 6

−(t31C−t21D+t1E+θ/t31)
1−1/t1

. Combining this with (5.18), we
know that for any t1, t2 ∈ Tr, we have

− (t31C − t21D + t1E + θ/t31)

(

1 +
( 1

t1
+ 1

t2
)

1 − 1
t1

)

>
∣
∣t32C + t22D + t2E + θ/t32

∣
∣.

By definition, ti > n for any i, so we have
( 1

t1
+ 1

t2
)

1− 1
t1

6

3/n. Therefore, for any t1, t2 in Tr, the following
inequality holds:
(5.19)
−(t31C + t21D − t1E + θ/t31)∣
∣t32C + t22D + t2E + θ/t32

∣
∣ >

1

1 +
( 1

t1
+ 1

t2
)

1− 1
t1

> 1−3/n.

Note that the denominator of the LHS of (5.19) can
be zero for at most 6 values of t2; we eliminate
any such values from Tr, and we still have |Tr| >
Θ(log n). (Actually, we will only need |Tr| > 5
for the remainder of the argument to establish the
required contradiction.) Let us pick t0 < t1 <
t2 < t3 < t4 from Tr, and let us write G to denote
−(t31C − t21D + t1E + θ/t31). We know that

G 6 t31|C| + t21|D| + t1|E| + |θ|/t31.

Also for t0, t2, t3, t4, we write:

F0 := t30C − t20D + t0E + θ/t30(5.20)

F2 := t32C − t22D + t2E + θ/t32(5.21)

F3 := t33C − t23D + t3E + θ/t33(5.22)

F4 := t34C − t24D + t4E + θ/t34.(5.23)

Let F denote maxi=0,2,3,4 |Fi|. By (5.19) we know
that

(5.24)
G

F
> 1 − 3/n.

Viewing C,D,E, θ as unknowns, we may solve
the above linear system consisting of equations
(5.20),(5.21),(5.22),(5.23) using Cramer’s rule. We
find that

C =

∣
∣
∣
∣
∣
∣
∣
∣

F0 −t20 t0 1/t30
F2 −t22 t2 1/t32
F3 −t23 t3 1/t33
F4 −t24 t4 1/t34

∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣

t30 −t20 t0 1/t30
t32 −t22 t2 1/t32
t33 −t23 t3 1/t33
t34 −t24 t4 1/t34

∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣

F0 t20 t0 1/t30
F2 t22 t2 1/t32
F3 t23 t3 1/t33
F4 t24 t4 1/t34

∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣

t30 t20 t0 1/t30
t32 t22 t2 1/t32
t33 t23 t3 1/t33
t34 t24 t4 1/t34

∣
∣
∣
∣
∣
∣
∣
∣

.
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Since 0 < t0 < t2 < t3 < t4 and these values are
at least a factor of n apart from each other, we have
that ∣

∣
∣
∣
∣
∣
∣
∣

t30 t20 t0 1/t30
t32 t22 t2 1/t32
t33 t23 t3 1/t33
t34 t24 t4 1/t34

∣
∣
∣
∣
∣
∣
∣
∣

is Ω(t34t
2
3t2t

−3
0 ).

Since F = maxi=0,2,3,4 |Fi|, we know that the
absolute value of

∣
∣
∣
∣
∣
∣
∣
∣

F0 t20 t0 1/t30
F2 t22 t2 1/t32
F3 t23 t3 1/t33
F4 t24 t4 1/t34

∣
∣
∣
∣
∣
∣
∣
∣

is at most O(Ft24t3t
−3
0 ). Thus we have |C| =

O( F
t4t3t2

).
Similar analysis shows that

|D| = O(F/t3t2); |E| = O(F/t2); and |θ| = O(Ft30).

Therefore, we have

G 6 |C|t31 + t21|D| + t1|E| + |θ|/t31

6 F ∙ O(t31/t4t3t2 + +t21/t2t3 + t1/t2 + t30/t31).

Recalling that ti+1/ti > n as they are different powers
of n, we have that

G

F
6 O(1/n).

This contradicts (5.24) and concludes the proof of the
soundness Lemma, Lemma 5.2.

5.2 Hardness reduction from Label Cover
Recall that our reduction is from a Label Cover in-
stance L specified by (U, V,E, k,m, Π) . For nota-
tional convenience let us write F (q) to denote the
space of possible labels for vertex q ∈ U ∪ V , for
u ∈ U , F (u) denotes [k] and for v ∈ V , F (v) denotes
[m].

We reduce to a learning problem with labeled
examples in R|U |k+|V |m × {−1, 1}. Let dim denote
|U |k + |V |m. For y ∈ Rdim and q ∈ U ∪ V , we write
y
(i)
q to denote the vector consisting of all coordinates

that correspond to vertex q, i.e. yu denotes (y(i)
u )i∈[k]

for u ∈ U and yv denotes (y(i)
v )i∈[m] for v ∈ V.

We give the reduction from Label Cover to the
learning problem below. The high level idea is that
the Dictator Test T2 is performed on the restricted
function pv(y) for a random v ∈ V .

Reduction from Label-Cover L

Input: Label Cover Instance (U, V,E, k,m, Π).

1. Randomly pick a vertex v ∈ V .

2. For each w 6= v, w ∈ U ∪ V , set yw = 0.

3. Let a1, . . . , am be independent {0, 1} bits each
with E[ai] = β. Let g1, . . . , gm be independent
N(0, 1) Gaussian random variables. Let i
be chosen uniformly from [(log m)2] and set
t = mi. Let b be a random uniform bit from
{−1, 1}.

4. Set r = (a1g1, a2g2, . . . , amgm).

5. Let ω ∈ Rm be ω = (1, . . . , 1), and set
yv := t3r + bt2δω.

6. Output the labeled example (Fold(yv), b) (we
describe the folding procedure Fold(∙) later).

The learning problem is to find a degree 2 polynomial
p : Rdim → {−1, 1} such that sign(p(y)) = b
for the largest possible fraction of labeled examples
generated as described above. Let us denote

p(y) = θ +
∑

q∈U∪V,i∈F (q)

c(i)
q y(i)

q

+
∑

q1,q2∈U∪V,i∈F (q1,j∈F (q2)

c
(i,j)
(q1,q2)

y(i)
q1

y(j)
q2

.

Notice that in the reduction, when vertex v is
picked we set all the coordinates to zero except yv.
Essentially we are performing the test T2 on the
function

pv = θ +
∑

i∈[m]

c(i)
v y(i)

v +
∑

i,j∈[m]

c(v(i),v(j))y
(i)
v y(j)

v

which is the restriction of p(y) obtained by setting
all the coordinates to zero except those coordinates
corresponding to vertex v. The overall fraction of
agreement of p(y) on all examples is the average
probability, over all v ∈ V , that pv passes T2.

Folding Trick: We use the “folding ” technique
that was first introduced in [9, 19]. The trick es-
sentially amounts to the following: instead of out-
putting the labeled example (y, b) in the last step of
the reduction, we output (Fold(y), b) where Fold(y)
is the projection of y into a subspace H⊥ (defined
below). Folding enables us to enforce that p takes
the same value on different points in Rdim as long as
they project to the same point in H⊥.
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We define the subspaces H,H⊥ for our folding as
follows:

Definition 5.4. For every e = {u, v} ∈ E, i ∈ [k],
we define b(e, i) ∈ Rdim to be the vector that has 0
at every coordinate except that b(e, i)(i)u is 1 and for

every j ∈ (πe)−1(i), b(e, j)(j)v is −1. Let B be the
collection of all such b(e, i), i.e. B = {b(e, i) | e =
{u, v} ∈ E, i ∈ [k]}. We define H to be span(B) and
H⊥ to be the orthogonal complement of H in Rdim.

We define Fold(y) to be the projection of y onto
H⊥. It is easy to see that the mapping Fold(∙) can be
performed in polynomial time.

After the folding procedure, we can further en-
force p(x) to have the property:

For any h ∈ H and x ∈ Rdim, p(x + h) = p(x).

We call functions that have the above property
“folded”. In particular for e = {u, v} ∈ E, c ∈ R, and
i ∈ [k], a folded function p satisfies p(x + cb(e, i)) =
p(x). If we view p(y) as a polynomial only on y

(i)
u and

y
(j)
v for j ∈ (πe)−1(i), then Lemma 5.7 shows that we

have the following folding property of p:

c(i)
u =

∑

j∈(πe)−1

c(j)
v .

If we sum over all possible i, this implies for any
edge {u, v}, we have

∑

i∈[k]

c(i)
u =

∑

i∈[m]

c(i)
v .

Now we are ready to prove Theorem 1.2. We will
show the following two properties of the reduction to
complete the proof.

Lemma 5.5 (Completeness). If Opt(L) = 1, then
there is a folded function p(x) that is consistent with
1−1/ log m fraction of the labeled examples generated
by the reduction.

Lemma 5.6 (Soundness). If Opt(L) 6 1/mη, then
there is no folded degree-2 polynomial that is consis-
tent with 1/2+ 2

log2 m
fraction of the labeled examples

generated by the reduction.

Combining Lemmas 5.5 and 5.6 and noticing
that m can be an arbitrarily large constant (such
as e1/ε2),we obtain Theorem 1.2. (A discretization
similar to that of Section 4.3 is also required, and can
be obtained in a routine way by slightly modifying the
parameters of that section’s construction.)

Proof of Theorem 5.5: Suppose that
Opt(L) = 1, so there is a labeling l satisfying
all the edges. Then consider the following function

p(x) =
∑

w∈U∪V

x(l(w))
w .

For every v ∈ V , the function pv is a dictator and
passes Tm with probability at least 1 − 1

log m by
Lemma 5.1. Consequently the overall probability
that p passes the test is at least 1−1/ log m. Finally,
it is easy to check that thus function p(x) is folded.

Proof of Theorem 5.6: Suppose that there
is some folded degree-2 polynomial p(x) such that
sign(p(x)) agrees with more than 1

2 + 2
log m fraction

of the example, i.e., the averaging passing probability
of pv on Tm is 1

2 + 2
log m . We will show that Opt(L) >

1/mη and thus prove the theorem.
By an averaging argument, we know for a 1

log m
fraction of the vertices v ∈ V , the restricted polyno-
mial pv passes the test Tk with probability at laest
1
2 + 1

log m ; we refer to any such v as a “good” vertex.
We say that an edge is “good” if the V -endpoint of
the edge is a good vertex. Since the graph is regular,
we know that at least a 1

log m fraction of all edges are
“good”.

For a “good” vertex v, let us define Iv to be

Iv = {j| j ∈ [m], c(j)
v >

m∑

i=1

c(i)
v /m2}.

By Lemma 5.2, we have |Iv| 6 (log m)2 and
∑

i∈[m] c
(i)
v > 0. For every u ∈ U , we define Ju =

{j| j ∈ [k], c(j)
u >

∑
i∈[k] c

(i)
u /k}. We note that Ju is

not empty as

max
j

c(j)
u >

∑

i∈[k]

cu[i]/k.

We define the following labeling strategy for L.
For u ∈ U , randomly assign it a label from Ju; for
v ∈ V , randomly assign it a label from Iv (if Iv is
empty, we assign a random label to v).

For every good edge e = (u, v) and any j ∈ Ju,
since p is folded, we have that

∑

i∈π−1
e (j)

c(i)
v = c(j)

u >
∑

i∈[k]

c(i)
u /k =

∑

i∈[m]

c(i)
v /k.

There is at least one label i in π−1
e (j) such that

∑
i∈[m] c

(i)
v /km >

∑
i∈[m] c

(i)
v /m2, and this label is

therefore in Iv. As noted earlier we have |Iv| 6
(log m)2, and so by our randomized labeling strategy
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there is at least a 1/(log m)2 probability that edge
{u, v} is satisfied.

Therefore the above labeling strategy satisfies (in
expectation) at least 1/(log m)2 fraction of the good
edges and consequently at least 1/(log m)3 fraction of
all edges. This means that Opt(L) > 1/mη and the
proof is complete.

5.2.1 Folding Lemma

Lemma 5.7. Let

f(x) = θ +
n∑

i=0

wixi +
∑

06i6j6n

wijxixj

be a degree 2 function. Suppose that for every x ∈
Rn, c ∈ R we have f(x + c(1,−1, . . . ,−1)) = f(x).
Then w0 =

∑n
i=1 wi.

Proof. Expanding the equality f(x +
c(1,−1, . . . ,−1)) = f(x), we get that

θ + w0(x0 + c) +
n∑

i=1

wi(xi − c) + w00(x0 + c)2

+
n∑

j=1

w0j(x0 +c)(xj −c)+
∑

16i6j6n

wij(xi−c)(xj −c)

= θ +
n∑

i=0

wixi +
∑

06i6j6n

wijxixj .

Since this equation holds for all c, x, if we express
the LHS and RHS as polynomials in the variables
c, x0, x1, . . . , xn, the corresponding coefficients must
be the same. If we look at the coefficients of the
degree-1 monomial c, we have that w0−

∑n
i=1 wi = 0,

and the lemma is proved.

6 Conclusion

We have established two hardness results for proper
agnostic learning of low-degree PTFs. Our results
show that even if there exist low-degree PTFs that are
almost perfect hypotheses, it is computationally hard
to find low-degree PTF hypotheses that perform even
slightly better than random guessing; in this sense
our hardness are rather strong. However, our results
do not rule out the possibility of efficient learning
algorithms when ε is sub-constant, or if unrestricted
hypotheses may be used. Strengthening the hardness
results along these lines is an important goal for
future work, but may require significantly new ideas.

Another natural goal for future work is the
following technical strengthening of our results: show
that for any constant d, it is hard to construct a
degree-d PTF that is consistent with ( 1

2 + ε) fraction

of a given set of labeled examples, even if there exists
a halfspace that is consistent with a 1 − ε fraction of
the data. Such a hardness result would subsume both
of the results of this paper as well as much prior work,
and would serve as strong evidence that agnostically
learning halfspaces under arbitrary distributions is a
computationally hard problem.

Appendix

A Probability inequalities

We will use the Berry-Esséen Theorem, which is a
quantitative version of the Central Limit Theorem:

Theorem A.1. (Berry-Esséen Theorem) Let
x1, x2, . . . , xn be i.i.d. uniform {−1, 1}-valued
random variables. Let c1, . . . , cn ∈ R be such that∑n

i=1 c2
i = 1 and maxi |ci| 6 τ . Let g denote a unit

Gaussian variable drawn from N(0, 1). Then for any
θ ∈ R, we have

|Pr[
n∑

i=1

cixi 6 θ] − Pr[g 6 θ]| 6 τ.

We will also use the following anti-concentration
result for low-degree polynomials over Gaussian ran-
dom variables, due to Carbery and Wright:

Theorem A.2 ([5]). Let p : Rn → R be a nonzero
degree-d polynomial over the reals. Then for all
τ > 0, we have

Prx∼Nn [|p(x)| 6 τ‖p‖2] 6 O(dτ1/d).
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